Last updated April 10, 2024
This web page provides updates and disseminates resources related to an innovative project based at the University of Minnesota to conduct empirical research and generate evidence-based consensus recommendations for the ethical conduct of research using highly portable, cloud-enabled MRI in new and diverse populations in field settings. The project includes a national Working Group of top neuroethics, neurolaw, and neuroscience experts.
Highly-portable MRI, a transformative technology supported by the NIH BRAIN Initiative, will allow researchers to conduct population-based neuroscience research, including racial and ethnic minorities, rural, and socioeconomically disadvantaged populations that are currently underrepresented in neuroimaging research, and will accelerate research on brain biomarkers for neurodegeneration. This project is addressing fundamental challenges in field-based neuroimaging research such as informed consent, data privacy, and return of results.
This web page includes publications and presentations supported by an NIH Neuroethics administrative supplement (2018-2019), an NIH Bioethics administrative supplement (2019-2020) and an NIH four-year grant on highly portable and cloud-enabled research (2020-24).
Publications and Presentations
Lu N, Strander S, Shen FX, Health Care Needs a New Profession: Neuroimaging Counseling. STAT 2024,
Comeau DS, Silverman BC, Wolf SM, Role of Institutional Review Boards in Ensuring Ethical Oversight of Neuroimaging Research Using Emerging, Highly Portable MRI, PRIMR23 (2023), Abstract (accepted).
Shen FX, Lawrenz F, Torres E, Wolf SM, Key Expert Stakeholder Perspectives on the Ethical, Legal, and Social Implications of Emerging Technology for Highly Portable and Accessible MRI, International Neuroethics Society meeting (2022), Poster.
Shen FX, Lawrenz FP, Wolf SM, Garwood M. The Need for ELSI Guidance on Mobile Neuroimaging Technologies: Stakeholder Perspectives of Scientists Developing the Technologies. Poster abstract accepted: BRAIN Initiative Investigators Meeting 2021.
Shen FX, Wolf SM, Bhavnani S, Deoni S, Elison J, Fair D, Garwood M, Gee M, Geethanath S, Kay K, Lim K, Lockwood-Estrin G, Luciana M, Peloquin D, Rommelfanger K, Schiess N, Siddiqui K, Torres E, Vaughn JT. Emerging Ethical Issues Raised by Highly Portable MRI Research in Remote and Resource-Limited International Settings. NeuroImage 2021;doi:10.1016/118210.
Shen FX, Wolf SM, Fair D, Farah M, Garwood M, Han D, Illes J, Kimberly W., Klein E, Rommelfanger K, Rosen M, Sheth K, Torres E, Tuite P, Vaughan J, Challenges in Deploying Low-Field and Ultra-Low Field MRI in Research, Clinical Care, Population Screening, and Direct-to-Consumer Use, American Academy of Neurology meeting (2022), Abstract.
Shen FX, Wolf SM, Gonzalez R, Garwood M. Ethical Issues Posed by Field Research Using Highly Portable and Cloud-Enabled Neuroimaging. Neuron 2020;105(5): 771-775.
Shen FX, Wolf SM, Lawrenz F, Comeau DS, with the Working Group on Highly Portable and Cloud-Enabled Neuroimaging Research: Confronting Ethics Challenges in Field Research with New Populations, Challenges in Using Portable MRI (pMRI) Technologies for Field-Based Research; Need for ACR Guidance, American College of Radiology 2024 Annual Meeting (2023), Abstract (accepted).
Shen FX, Wolf SM, Lawrenz F, Comeau DS, Dzirasa K, Evans B, Fair D, Farah M, Han S, Illes J, Jackson J, Klein E, Rommelfanger KS, Rosen MS, Torres E, Tuite P, Vaughan J, Garwood M, Ethical, Legal, and Policy Challenges in Field-Based Neuroimaging Research Using Emerging Portable MRI Technologies: Guidance for Investigators and for Oversight, NIH BRAIN Initiative Meeting (2023), Poster.
Shen FX, Wolf SM, McGeveran W, Garwood M, Gonzalez R. The Ethical, Legal, and Social Implications of Highly Portable and Cloud-Enabled Neuroimaging in the Field. Poster presented at: International Neuroethics Society (INS) Annual Meeting 2019 (Outstanding Poster Award).
Wolf SM, Shen FX. Comment, Ethical Challenges in Remote Research. JAMA 2021;325(19):1935-1936
Key Resources:
Ethics and Legal Regulation of Field-Based Neuroimaging
- Bianchi DW, Cooper JA, Gordon JA, Heemskerk J, Hodes R, Koob GF, Koroshetz WJ, Shurtleff D, Sieving PA, Volkow ND, Churchill JD, Ramos KM. Neuroethics for the National Institutes of Health BRAIN Initiative. The Journal of Neuroscience 2018;38(50):10583
- Illes, J. Modulating the Mind. TEXxAbbotsford, Mar 30, 2020.
Science and Technology of Highly Portable MRI
- Cooley CZ, Stockmann JP, Witzel T, LaPierre C, Mareyam A, Jia F, Zaitsev M, Wenhui Z, Stang P, Scott G, Adalsteinsson E, White JK, Wald LL. Design and implementation of a low-cost, tabletop MRI scanner for education and research prototyping. Journal of Magnetic Resonance 2020;310:106625.
- Geethanath S, Vaughan JT. Accessible magnetic resonance imaging: a review. Journal of Magnetic Resonance Imaging 2019;49(7):e65-e77.
- Sarracanie M, LaPierre CD, Salameh N, Waddington DEJ, Witzel T, Rosen MS. Low-cost high-performance MRI. Scientific Reports 2015;5:1-9.
- Wald LL, McDaniel PC, Witzel T, Stockmann JP, Cooley CZ. Low‐cost and portable MRI. Journal of Magnetic Resonance Imaging 2020;52(3):686-696.
- Hyperfine:
- Barber C. An emerging tool for COVID times: The portable MRI. Scientific American, Nov 12, 2020.
- Herper M. Smaller, lighter, cheaper: A serial entrepreneur wants his portable MRI to transform medicine. STAT, Oct 25, 2019.
- Mobile and wearable neuroimaging generally (including EEG and fNIRS):
- Stopczynski A, Stahlhut C, Petersen MK, Larsen JE, Jensen CF, Georgieva MG, Andersen TS, Hansen LS. Smartphones as pocketable labs: Visions for mobile brain imaging and neurofeedback. International Journal of Psychophysiology 2014;91(1):54-66.
- Ward JA, Pinti P. Wearables and the brain. IEEE Pervasive Computing 2019;18(1):94-100.
- Mobile positron emission tomography (PET):
- Bauer CE, Brefczynski‐Lewis J, Marano G, Mandich M, Stolin A, Martone P, Lewis JW, Jaliparthi G, Raylman RR, Majewski S. Concept of an upright wearable positron emission tomography imager in humans. Brain and Behavior 2016;6(9):e00530.
- Mobile magnetoencephalography (MEG):
- Boto E, Seedat ZA, Holmes N, Leggett J, Hill RM, Roberts G, Shah V, Fromhold TM, Mullinger KJ, Tierney TM, Barnes GR, Bowtell R, Brookes MJ. Wearable neuroimaging: combining and contrasting magnetoencephalography and electroencephalography. NeuroImage 2019;201:116099.
- Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer SS, Muñoz LD, Mullinger KJ, Tierney TM, Bestmann S, Barnes GR, Bowtell R, Brookes MJ. Moving magnetoencephalography towards real-world applications with a wearable system. Nature 2018;555(7698):657-661.
- Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (DOT):
- Baker JM, Rojas-Valverde D, Gutiérrez R, Winkler M, Fuhrimann S, Eskenazi B, Reiss AL, Mora AM. Portable functional neuroimaging as an environmental epidemiology tool: A how-to guide for the use of fNIRS in field studies. Environmental health perspectives 2017;125(9):094502.
- Blasi A, Lloyd-Fox S, Katus L, Elwell CE. fNIRS for tracking brain development in the context of global health projects. Photonics 2019;6(3):89.
- Fishell AK, Arbeláez AM, Valdés CP, Burns-Yocum TM, Sherafati A, Richter EJ, Torres M, Eggebrecht AT, Smyser CD, Culver JP. Portable, field-based neuroimaging using high-density diffuse optical tomography. NeuroImage 2020;215:116541.
- Mobile EEG:
- Casson AJ. Wearable EEG and beyond. Biomedical Engineering Letters 2019;9(1):53-71.
- Lau-Zhu A, Lau MPH, McLoughlin G. Mobile EEG in research on neurodevelopmental disorders: Opportunities and challenges. Developmental Cognitive Neuroscience 2019;36:100635.
- Park JL, Donaldson DI. Detecting the neural correlates of episodic memory with mobile EEG: Recollecting objects in the real world. NeuroImage 2019;193:1-9.